The Learning Experience of Teachers, Teacher Students, and Students through NASA STEM Activities Using an Open Approach

- · Asst. Prof. Dr. Jiradawan Huntula
- Science Education Program, Faculty of Education,
- Institute for Research and development in Teaching Professional for ASEAN,
 - Khon Kaen University, Thailand.

International Collaboration

Institute for Research and Development in Teaching Profession for ASEAN (IRDTP)

Teacher Education

IRDTP as the Global Innovation Hub

Global Innovation School

เน้นการจัดการเรียนการสอนแบบ STEAM

เน้นการพัฒนาทักษะจำเป็นที่โลกอนาคตต้องการผ่านการทำกิจกรรมด้วยตัวนั

Global Innovation School

112 likes • 143 followers

Global Innovation School

nn School

Global Innovation S

นันการพัฒนาทักษะจำเป็นที่โลกอนาคตต้องการผ่านการทำกิจก

Global Innovation School

112 likes • 143 followers

Lnool

เน้นการจัดการเรียนการสอนแบบ เน้นการพัฒนาทักษะจำเป็นที่โลก

112 likes • 143 followers

Teacher educator as the practitioner

Thailand Lesson study incorporated with Open Approach (TLSOA)

Soruce(s): Inprasitha, 2010

A NASA/DESIGN SQUAD CHALLENGE

TOUCHDOWN

NASA STEM

Design and build a shock-absorbing system that will protect two "astronauts" when they land.

Science

- · Acceleration due to gravity
- Air resistance
- Measurement
- Potential and kinetic energy

Technology

design and build a shockabsorbing system out of paper, straws, and mini-marshmallows;

https://www.nasa.gov/stem

Engineering

improve their design based on testing results.

Mathematics

Measurement

STEM + TLSOA

A problem-solving rubric with application to physics

	3	2	1	0
	excellent	good	Fair	Poor
USEFUL	Students able to	Students able to	Students able to	Students are unable to
DESCRIPTION	explain how a walking	explain how a walking	explain how a walking	explain how a walking
	monster can and	monster can and	monster can and	monster can and
	cannot walk ready to	cannot walk but the	cannot walk but is	cannot walk and
	specify the reason.	reasoning is unrelated	unable to determine	unable to determine
		to the gait described.	the reason.	the reason.
PHYSICS	Students able to	Students were able to	Students are able to	Students are unable to
APPROACH	identify the Center of	identify at least two of	identify at least one	identify the Center of
	Mass, Center of Gravity,	the centers of mass,	Center of Mass, Center	Mass, Center of Gravity,
	Friction and Gravity	center of gravity,	of Gravity, Friction, and	Friction and Gravity
	from walking monsters.	friction, and gravity	Gravitational Force	from walking monsters.
		from the walking	from a walking	
		monster.	monster.	
SPECIFIC	Students able to relate	Students are able to	Students are able to	Students unable to
APPLICATION OF	the Center of Mass,	link the Center of Mass,	link at least one of the	associate the Center of
PHYSICS	Center of Gravity,	Center of Gravity,	Center of Mass, Center	Mass, Center of Gravity,
	Friction, and	Friction and Gravity	of Gravity, Friction, and	Friction and Gravity
	Gravitational force from	from making at least	Gravitational Forces	from walking monsters.
	walking monsters.	two walking monsters.	from making one	
			walking monster.	

A problem-solving rubric with application to physics

	3	2	1	0
	excellent	good	Fair	Poor
MATHEMATICA	Students able to relate	Students able to relate	Students able to relate	Students are unable to
LPROCEDURES	all the slopes, angles,	at least two slopes,	at least one aspect of	relate the slope, angle,
	and characteristics of	angles, and	the slope, angle, and	and characteristics of
	two legs that are	characteristics of two	characteristics of two	the two legs that are
	parallel.	parallel legs.	legs that are parallel.	parallel.
LOGICAL	Students able to	Students able to	Students able to	Students are unable to
PROGRESSION	Problem Identification,	Problem Identification,	Problem Identification,	Problem Identification,
(Reference from	Related Information	Related Information	Related Information	Related Information
Engineering Design	Search, Solution Design,	Search, Solution Design,	Search, Solution Design,	Search, Solution Design,
Process)	Planning and	Planning and	Planning and	Planning and
	Development, Testing,	Development, Testing,	Development, Testing,	Development, Testing,
	Evaluation and Design	Evaluation and Design	Evaluation and Design	Evaluation and Design
	Improvement,	Improvement,	Improvement,	Improvement,
	Presentation that	Presentation that	Presentation that	Presentation that
	spawns walking	spawns walking	spawns walking	spawns walking
	monsters at every step.	monsters in at least 3	monsters in at least 1	monsters.
		steps.	step.	

Docktor J., Dornfeld J., Frodermann E., Heller K., Hsu L., Jackson K., Mason A., Ryan Q., Yang J. (2016)

Results: Problem-Solving Ability of Physics

Problem-Solving Ability of Physics

Results: Attitudes

TLSOA Training course : Teacher Skills

On site
Online
Highbridge

TLSOA Teacher Skills

Teacher
Training: Nasa
STEM by
TLSOA
in 2023

On-site Teacher Training

Example implementation from teachers

Ideas

➤ Link to real world (spring/chock)

Apply spring for absorbing

Ideas

Apply the straw for absorbing

Ideas

นักเรียนใช้แนวคิดเรื่องการเพิ่มช่องว่างเพื่อลดแรงกระแทก

❖ ideas

Make balance

Appy material for a beam

Teachers' implementation with students at school.

In Krisaket Province; Secondary school students

Thank you